Studies on the Method of the Orthogonal Collocation VIII: A Spline Collocation Method for Distillation Columns Simulation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orthogonal cubic spline collocation method for the Cahn-Hilliard equation

The Cahn–Hilliard equation plays an important role in the phase separation in a binary mixture. This is a fourth order nonlinear partial differential equation. In this paper, we study the behaviour of the solution by using orthogonal cubic spline collocation method and derive optimal order error estimates. We discuss some computational experiments by using monomial basis functions in the spatia...

متن کامل

SPLINE COLLOCATION METHOD FOR SOLVING BOUNDARY VALUE PROBLEMS

The spline collocation method is used to approximate solutions of boundary value problems. The convergence analysis is given and the method is shown to have second-order convergence. A numerical illustration is given to show the pertinent features of the technique.  

متن کامل

A spline collocation method for integrating a class of chemical reactor equations

. In this paper, we develop a quadratic spline collocation method for integrating the nonlinear partial differential equations (PDEs) of a plug flow reactor model. The method is proposed in order to be used for the operation of control design and/or numerical simulations. We first present the Crank-Nicolson method to temporally discretize the state variable. Then, we develop and analyze the pro...

متن کامل

Fourth Order Accuracy for a Cubic Spline Collocation Method

This note is inspired by the paper of Bialecki, Fairweather, and Bennett [1] which studies a method for the numerical solution of u00 = f on an interval, and u = f on a rectangle, with zero boundary data; their scheme calculates that C piecewise cubic U for which U 00 (or U) agrees with f at the two (or four) Gauss quadrature points of each subdivision of the original domain. They observe that ...

متن کامل

An ADI Crank-Nicolson Orthogonal Spline Collocation Method for the Two-Dimensional Fractional Diffusion-Wave Equation

A new method is formulated and analyzed for the approximate solution of a twodimensional time-fractional diffusion-wave equation. In this method, orthogonal spline collocation is used for the spatial discretization and, for the time-stepping, a novel alternating direction implicit (ADI) method based on the Crank-Nicolson method combined with the L1-approximation of the time Caputo derivative of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of King Saud University - Engineering Sciences

سال: 2009

ISSN: 1018-3639

DOI: 10.1016/s1018-3639(18)30512-9